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Summary 

The detection, identification and classification of micro-Unmanned Aerial Vehicles (UAVs) using 
their acoustic signature is at an early stage where the current performances do not meet the 
market requirements. They are targeted to complete electro-optical and radio frequency sensors 
acting in short distances (between 200 and 500 meters). This study firstly defines the detailed 
requirements to develop effective and affordable countermeasures to report of UAV flying over 
critical areas, especially in urban areas. It concerns Signal-to-Noise Ratio (SNR) required by the 
environment and UAV type/distance, the operational frequency domain with the best SNR, the 
localization accuracy required for neutralization, the real time capabilities to act as soon as 
possible… 
The sound landscape observation is a complex task which has to isolate the noise sources of 
interest in short delay. The second part of the study establishes a state of the art of the available 
technologies on the market and the academic works addressing this topic and details how the 
current solutions cover the complete procedure from detection to classification. For the detection, 
the system tries to measure the acoustic signature using a single microphone or more complex 
sensors for a better directivity. For the identification and classification, a Machine Learning 
procedure is well-suited to recognize UAV audio fingerprint. For now, many academic papers 
demonstrate the low maturity of the procedure and the need to improve its reliability.  

1. Introduction

The detection, identification and classification of micro-Unmanned Aerial Vehicles (UAVs) 
requires the combination of different sensors to generate low levels of false negatives and false 
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positives. The use of multiple detection modalities is intended to increase the probability of a 
successful detection, given that no individual detection method is entirely fail proof. This is difficult 
to achieve. A detailed study [1] counted in February 2018 155 counter-drone products either on 
the market or under active development for detection. Those systems rely on a variety of 
techniques for detecting drones: Radar, Radio Frequency (RF), Electro-optical (EO), Infrared 
(IR), Acoustic. 95 appear to employ a single sensor type, while at least 60 employ a combination 
of several sensor types. Roughly an equal number of systems employ radar, RF detection, IR 
and EO sensors while only 21 systems employ an acoustic sensor. The acoustic sensor detects 
drones by recognizing the unique sounds produced by their propulsion system. The limited 
number of solution based on acoustic may points out the low effectiveness of such a sensor in 
many situations. The first part of this paper analyses the requirements and foreseen limitations 
of the use of acoustic sensor, especially in urban area. Then a second part lists the current 
technology based on acoustic sensors with their adequacy to those requirements. 

2. Requirements for effective acoustic UAV detection

2.1 UAV none covered by usual detection system 

UAVs group a numerous variety of flying autonomous systems from small ones of few 
centimetres to the largest ones of real plane size. As traditional surveillance systems cope with 
the largest objects, the ones of interest are “small UAVs, including cheap Commercial off the 
Shelf (COTS) and easy to assemble UAS components” as described in the recent last H2020 
call  “Capabilities to detect, classify, track, identify and/or counter UASs in defence scenarios ID: 
EDIDP-CUAS-2020 (European Defence Industrial Development Programme)” 
(https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-
details/edidp-cuas-2020 ). The below Table 1 extracted from the call lists them with their 
characteristics. 

TAXONOMY 

(coherent with 

NATO) 

Reference 

information 

regarding UAV 

threats 

Reference 

information 

regarding UAV 

threats 

Reference 

information 

regarding UAV 

threats 

Reference 

information 

regarding 

UAV threats 

Reference 

information 

regarding UAV 

threats 

Threat Weight 

[kg] 

Reference size 

[cm3] 

Max speed 

[km/h] 

Typical 

altitude [m] 

Typical RCS 

(Radar Cross 
Section) 

[dBm2] 

Class I (a) and 

(b) - micro 

< 2 kg 25 x 25 x 30 80 100 -20 

(objective -30) 

(Human in the loop) 

Class I (c) - 

mini 

> 2 & < 20 40 x 40 x 30 100 1 000 -13 

(objective -20) 

Class I (d) - 

small 

> 20 & < 150 200 x 150 x 50 150 1 500 -10 

Class II - 

tactical 

> 150 & < 600 1 000 x 700 x 

100 

300 3 000 -3 

Table 1 : UAV classification from H2020 call  “Capabilities to detect, classify, track, identify and/or counter 
UASs in defence scenarios ID: EDIDP-CUAS-2020. 

The Class I micro UAV are flying at low altitude and are very small compared to other ones, 
permitting them to evolve in urban area, hardly detected by conventional radars. Their very low 
RF, thermal and acoustic signatures make them difficult to also detect by other sensors. The 
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acoustic sensor can help in detecting and identifying those Class I UAV with typical distance from 
100 to 1000 m for which one they are sensitive. 

2.2 UAV acoustic signature 

Class I UAS group a numerous variety of flying autonomous systems with multi-rotor or fixed-
wings, electric or thermic propulsion. As a consequence, their acoustic fingerprint can be very 
different, without prior knowledge of their frequency content and noise level. 
One of the primary applications of unmanned aerial vehicles is surveillance. As surveillance often 
needs to be quietly conducted, the capability of silent flight has led to very low noise system with 
preferable electric propulsion systems but usually reserved to professional with expensive costs. 
Most of the systems are COTS but those systems can also be home made with unpredictable 
acoustic signature but keeping some of the characteristics of usual technology and noise level. 
The picture below gives some averaged sound pressure level for DJI quadricopters (from 
https://www.airbornedrones.co/drone-noise-levels/). This range is close to the European Aviation 
Safety Agency drone regulations published in their Easy Access Rules for Unmanned Aircraft 
Systems (Regulations (EU) 2019/947 and (EU) 2019/945). These do mention maximum sound 
power LWA at 85 dB with a future target to 81 dB.  

Table 2 : DJI sound power level 

There are two different UAV types: the fixed-wings or multi-propellers. The measured noise of 
those vehicles is dominated by propeller-related noise, including narrowband deterministic noise 
and broadband noise. Both are characterized by prominent tonal components . The multicopter 
spectra have significant noise at higher harmonics of the blade passing frequency (BPF), and in 
some cases the levels at higher harmonics exceeds levels at the BPF compared to fixed-wings 
[4].     
Multi-copter drone flyovers noise emission have been conducted in many studies [2,3,4] including 
the basic manoeuvers of hover and forward flight. Three distinct frequency regions are identified 
in the sound spectra as illustrated on Figure 1 for DJI Matrice 600 Pro or Figure 2 for home-made 
Quad-rotor MUAS. Below 2 000 Hz, tones at harmonics of the BPF correspond to the narrowband 
peaks in the spectra. Broadband noise between 2 000 and 5 000 Hz is also an important noise 
source for these vehicles, including noise caused by unsteady pressure fluctuations due to 
turbulence and boundary layer interactions with the edges of the blade broadband. Over and up 
to 10 kHz the rotor self-noise is also very typical. It is caused by the electric motors with force 
pulses as the magnets and armature interact, and variations in forces caused by phase changes 
in the motor drive signal. Although atmospheric absorption at these high frequencies will 
attenuate such noise, it could still be an important part of the emission at closer distance. 
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Figure 1: UAV spectrum DJI Matrice 600 Pro from [2] 

Figure 2 : home-made Quad-rotor UAS from [3] 

Figure 3: DJI Phantom IV  acoustic signature from [6] 

2.3 Signal-to-noise ratio 

For acoustic detection, the own UAV emission cannot be considered as a single source of noise 
because it usually flies over noisy environment. For VIP events or in urban site the threat can act 
at short distance but usually with high background noise level. On the opposite, sensitive site 
protection requires middle range detection but in usual less noisy environment with constant and 
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regular levels. At last in military operational theatres or airports, the background noise can be at 
a large scale with unpredictable additive noisy events of different nature. So the signal-to-noise 
ratio is a parameter to consider to isolate the UAV acoustic signature from the other noise sources 
of an acoustic scene. 
The Figure 4 superimposes on the same graph the environment background level and the Sound 
Pressure Level of UAVs with decreasing distance. This estimation is given from average DJI 
sound power level with a decrease of 6 dB per doubling of distance. Those approximations are 
confirmed in [3] and [4] whose some results are presented in Figure 5.  It points out that a negative 
SNR is mostly envisaged for short distances and quickly below – 25 dB over 500 m. From usual 
microphone sensitivity, the maximum audible distance with acoustic sensors would be 1 km.    

Figure 4 : superimposition of usual UAV sound emission with distance and typical background noise level 

Figure 5 : interpolated noise level from [4] 

2.4 Implementation requirements regarding acoustic sensor and processing 

One point of interest which is to consider in the development of methodology is real time 
processing. As much as possible, the system has to deliver the results of detection/identification 
in real time. The state of the art will prove that this constraint limits the fitting processing and 
implies optimization in those last ones.  The Table 1 indicates speed of 100 km/h, 27 m/s for 
UAVs class I (c) mini. It means that with the previous analysis indicating that UAV could be 
detected from 500 meters, it remains 18 seconds to act for neutralization.  
The system must cover a 3D sound landscape without prior knowledge of any privileged direction.  
In some cases like VIP events, the system has to be easily deployed on the field. It implies low 
power consumer, easy positioning to communicate the drone position in GPS coordinate system, 
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low cumbersome and handled hardware, and robustness regarding harsh environmental 
exposition.   

3. State of the art for UAV detection/identification from their acoustic
signature

3.1 Actors and history 

The first publication referring drone detection dates from 2004 [23] with the TTCP-AG6 mission 
leaded by United States US to explore the use of acoustic sensor technology against UAVs. 
Although the first good results they present and claim, no further work from this group could be 
founded later about acoustic sensor. Besides, only one publication could be founded until 2015 
also in US [7].   
But most of the work were done after 2015. UAV detection/identification is therefore a recent 
topics of interest with mainly academic publications and theoretical experiments. Only two 
commercialized solutions can be found with brochures and associated patent in US and Norway 
[25, 26, 27] indicating performances which do not completely answer to the previous 
requirements.  

Area Objectives/methods Publication 
date 

Ref. 

US Mission to explore the use of acoustic sensor technology (Music) 
Beamforming for tracking with low cost array 
Droneshield patented solution (parabolic antenna / ML) 
Patent : Delta signature from different UAV manoeuvre  
Patent for system with audio/video/RF detection from multi-arrays 
Detection and Acoustic Scene Classification with Deep Learning 

2004 
2008 
2017 
2016 
2018 
2018 

23 
7 
24,25 
20 
26 
14 

China Patent for  wearable system with audio/video/ultrasonic detection  
Patent :UAV identification with ML and vibration velocity vector signal 
TDOA and tracking with Kalman filter 
Doppler effect and the matching method for UAV straight line flying 

2019 
2019 
2018 
2016 

21 
19 
8 
9 

Europe Beamforming and Tracking with Kalman filter  
Beamforming TDOA comparison 
Acoustic/video based detection/identification solution with micro array 
Patent for audio/video detection/identification system with micro array 
Micro Array Methodology coupling beamforming and SVM 
Identification/classification with SVM 
Correlation first approach  
Identification/classification with ML (LPC & freq spec slope) 
Beamforming for noise source tracking  

2020 
2019 
2018 
2017 
2019 
2017 
2016 
2015 
2015 

18 
6 
17,10 
27 
16 
15 
12 
13 
5 

Korea Identification and classification with Deep Learning 2017 28 

Australia laboratory prototype for embedded flying system to detect and avoid 
UAV (TDOA) 

2011 22 

Figure 6 : list of main publications relating UAV detection, identification and classification 

3.2 Detection 

In most of the publications, the detection consists of locating in the space the UAV as a source 
of noise.  The methodology is based on microphone array measurement and processing. There 
are three categories of algorithm which allow to localize the source.  
The first one is TDOA (Time Direction Of Arrival) or goniometry. It is usually calculated through 
the generalized cross-correlation function between two microphones. But four microphones or 
more are required to localize a sound source in 3D with better accuracy. They are arranged over 
a tetrahedral shape. This processing is interesting for its low computational complexity and time 
domain, large frequency range using low cost microphone array. This method is already used in 
gunshot detection with usually good signal-to-noise ratio and one or few noise sources. 
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The experimental tests carried out in laboratory-like conditions with determined and controlled 
sound scape [11] show good results. But its application for UAV detection meets the difficulties 
of multi-path effect, multi drone and the low signal-to-noise ratio (SNR) condition in complex 
environment (e.g. presence of buildings in city scape).  
TDOA method for UAV detection is detailed by Martin in 3D [11] with two to four microphones. 
The Phase transform function (GCC-PHAT) is usually applied as a window to attenuate the 
effects of the intensity difference in the generalized cross-correlation function.  

Figure 7 : sound source localization with TDOA methods from [11] 

In [10], the tetrahedral shape acoustic array is upgraded to seven microphones  to increase the 
frequency range and localization accuracy. In [8] two arrays of tetrahedron-shaped microphones 
are used to ensure accurate localization in 3D space. 
The regular movement of the UAV can also be used to improve its localization knowing that at 
succeeding time window analysis, the localization is close. [8] proposes a new TDOA algorithm 
based on the Gaussian prior probability density function which mainly makes use of the relevance 
of the TDOA estimation results for a flying drone between time k and time k−1 with the peak of 
cross-correlation function at time k will appear near the peak of one at time k − 1. The results are 
improved but at larger distance (80-100 m) and on large incident angle, the error range is quickly 
increasing. 
The second family groups maximum energy methods with mainly the usual beamforming method. 
It can be applied in time or frequency domains. The second one is at higher computation cost 
with Fast Fourier Transformations but allows a frequency selection where the source of interest 
emits noise. Thus, the energy of undesirable frequencies coming from other sources is 
attenuated and therefore the Signal-to-Noise Ratio (SNR) is improved. The method to select the 
frequency range of interest is manually set-up in most of the experiments. [23,6] propose to 
identify the harmonics of the rotor blades and focuses localization algorithms on those ones.  
In [17], localization is performed with an original method estimating the pressure and the particle 
velocity components on two orthogonal axis at the center of the microphone array from multiple 
microphone pairs. A Chinese patent from its abstract seems to use the same approach [19]. 
Blanchard in [6] compares beamforming to the previous TDOA methods using a dedicated ten 
microphone array distributed over three arms. The low accuracy of the GPS for the outdoor case 
did not allow to evaluate the actual performances of the methods while the results are good 
consistent between TDOA (goniometry) and beamforming (namded “TFDSB”) referring Figure 8. 
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Figure 8 : trajectory comparison between TDOA (goniometry) and beamforming (TFDSB) from [6] 

Beamforming is also successfully used in [5] determining that drones can be tracked from 160 to 
250 meters. 

The last category groups high resolution methods. MUSIC (MUltiple SIgnal Classification) has 
been early applied in [23] with good results. But those methods are sensitive to correlated 
sources and low Signal-to-noise ratio. In the publication they indicate that wind speed is below 5 
knots. [8] criticizes this method with “very low accuracy and fails to track the target”. No other 
publication refers to this type of method.  

Figure 9 : trajectory with MUSIC method from [23] 

3.3 Trajectory 

Whereas a microphone array usually provides only angular position, using the combined output 
of several arrays enables to obtain the source distance. This triangulation problem can be solved 
by different algorithms. It implies technical constraint to ensure the signal synchronisation 
between several data recording systems and their accurate relative position. A calibration 
procedure is proposed in [7] using TDOA.    
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Kalman filters are used in several publications to reconstruct the drone trajectory to obtain 
continuous trajectory from discretized position [8, 18]. This filter is widely used in tracking 
problems because of good real-time and low computational complexity. A method for 
reconstructing trajectories of multiple simultaneously flying quadcopter drones from microphone 
array measurements is presented in [18]. The method was tested in an anechoic chamber with 
up to four UAS flying at the same time in five different flight scenarios. 
[9] provides an original algorithm using the total least square estimate of the target trajectory 
combining beamforming and Doppler effect evolution over harmonics emitted by propellers but 
under the assumption of constant target height, direction, and speed. 

Figure 10 : trajectory reconstruction with speed level indicating by colours from [18] 

The output of the sound source localization algorithm can be processed exactly as traditional 
mono-channel signals for the case of beamforming. This class of algorithm presents an 
advantage compared to other ones which cannot reconstruct the “denoised” acoustic signature 
of the UAV acoustic source. The focused signal presents better signal-to-noise ratio than single 
microphone recording and as a consequence it will bring better performance in the identification 
step.  

3.4 Identification 

Features for acoustic characteristics 

While the previous “detection” processing allows to localize a moving sound source like a UAV, 
the identification processing recognizes this sound source in the audio scene as a UAV by its 
acoustic signature. The identification is performed by comparing the similarities on selected 
features between the detected sound source and values in a database from UAV recording and 
other environmental noises in training stage. The intelligent machine listening systems identifies 
acoustic sources similar to human listeners. This technology has been widely used for speech 
recognition based on machine learning well known as Automatic Speech Recognition (ASR). 
Many academic works try to apply similar methodologies for acoustic scene classification, with 
among them an application for drone identification [12,13]. 
When detecting human speech the three most used techniques are linear predictive coding 
(LPC), Mel-Frequency Cepstral Coefficients (MFCCs) and perceptual linear predictive (PLP) 
analysis. MFCC and PLP analysis are both based on how humans perceive sound. The methods 
could therefore be unsuitable for identifying UAV. LPC requires the analysed sounds to have 
spikes in the spectral envelop as human speech does. The acoustic signature of UAV presented 
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in the first chapter showed similarities to human speech with harmonics, which made LPC a 
possibility used in [13]. The zero crossing rate which counts the average number of times where 
the audio signal changes its sign within the short-time window useful for voiced sub-frame has 
not met the same efficiency for UAV identification. 
Among features based on the spectral content of the UAV signature, it is also commonly used 
Spectral Centroid and Spectral roll-off which represent the balancing point of audio spectrum and 
the frequency below which a certain amount of the spectral energy is concentrated, respectively 
[15].   
Other features relate to the energy of the signal. The slope of the frequency spectrum is used in 
[13]. In [15], the Short Time Energy provides a measure of the energy variations of the 
environmental sound over time.   
In [16], 32 features are computed over three different domains: the temporal, spectral and 
cepstral domains. They describe the input signals by means of statistical oriented, entropy 
oriented or shape oriented descriptors maximising the success of classification. 
 [12] introduces the use of correlation to identify a drone from its sound emission. With the help 
of correlation, the tightness of the relationship between two sets of data can be given. 
Those previously described features are calculated on small time window describing the 
perceptual physical property of the audio frame for UAV source of interest and other 
environmental sources. Then those ones can directly be aggregated into global vector or 
statistically processed on a mid-term time window to reduce variability sensitivity [15]. This task 
allows to look into long-term dependencies with statistical, polynomial, regression and 
transformations functions applied to the instantaneous features. For example in [14], to classify 
an acoustic scene, the model needs to initially compute all the events happening during the 
scene, followed by identifying the relationship between those events to make the final prediction. 
An original approach of machine learning has been patented [20] working on the difference of 
acoustic signature between two manoeuvres (stationary, moving, changing direction) types to 
identify the UAV. The acoustic signature delta may be correlated with acoustic signature deltas 
of various types of UAVs. 

Classifier for UAV 

The UAV classification problem can be addressed formulating a multiclass environmental audio 
recognition problem using preceding features. A SVM (Support Vector Machine) based classifier 
is usually trained for estimating the multidimensional audio descriptors [15,16]. The “one against 
all” and the “one against one” are the two most popular strategies for multi-class SVM. The first 
one consists of building one SVM per class, trained to distinguish the samples in a single class 
from the samples in all remaining classes while the “one against one” builds one SVM for each 
pair of classes. In any case, a labelled training data set is required to implement a SVM. In [16], 
two different learning models are tested: the first one uses two classes : UAV and noise, with a 
classic SVM model while the second one is based on an One Class Support Vector Machine 
algorithm where only the UAV class is learned. In [15], the “one against one” strategy is adopted. 
A boundary is defined by the hyperplan that separates the two classes with a maximum margin. 
The classification accuracy is given by the ratio of number of correct predictions to the total 
number of samples in the dataset. Identification results on the tested database in [15,16] give 
accuracies over 95 % for the two or one classes approaches. It is also pointed out that this high 
accuracy is reached thanks to the intrinsic separability of the created data obtained by the 
different features that have been chosen to compute.  
[14,28] explore the use of Convolutional Neural Network (CNN)  and Recurrent Neural Network 
(RNN) to detect the presence of multi-drone. [14] uses hand engineered features extracted from 
large-scale feature extraction schemes as inputs to Deep Neural Networks. [28] uses the most 
popular combination of feature and classification Mel-frequency Cepstrum Coefficients (MFCC) 
with the Gaussian Mixture Model (GMM). In both works, custom datasets were collected for 
different classes: multiple drone detection which includes background noise, a single drone in 
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the scene and two drones in the scene. The results in [14] prove that large-scale extraction 
schemes with Deep Neural Network or CNN with Spectrograms are possible with limited 
availability of data. [28] concludes from their experiments that the RNN model showed the best 
score. Both agree with the use of data augmentation to synthesize raw drone sound with diverse 
background sounds to alleviate the shortage of drone training data 
In the state of the art, a Chinese patent [19] also relates to “a UAV positioning system based on 
a vector detecting unit”, with “the following steps: training a UAV recognition model to obtain a 
trained UAV recognition model; allowing a vector detecting unit to acquire an ambient sound 
vector signal of a detection area; preprocessing the sound vector signal acquired by the vector 
detecting unit.” 

3.5 Strategy 

This section is interested into the implementation of the preceding technologies into industrial 
tools.  
Some patents relate to the use of acoustic sensor for UAV detection combined with other sensors 
without detailing the technology envisaged with acoustic sensors [21, 26].  
In [22], they apply the TDOA using a small array of microphones located on board an UAV or 
aircraft to characterise the temporal variation of the received tone of an approaching aircraft/UAV 
and estimate its propeller blade rate (and hence type), together with its speed, time and distance 
to the point of closest approach. This work is interesting by the fact that the acoustic sensors and 
processing are envisaged to be embedded on UAV but requiring to maximise effectiveness of 
the adaptive cancellation techniques of the own UAV noise embedded the array. 
In [17] and [10], a network of compact microphone arrays is used to detect and localize a potential 
target in real time, and the 3D DOA of this potential target is then transferred to an optical system 
for a multi-modal audio/video accurate identification. First, spatial filtering is achieved using 
differential beamforming to focus the array on four principal directions in order to enhance the 
initial detection. Then, the video system with a limited view angle is oriented towards the target 
before triggering the tracking.  
In [24], DroneShield details their patented technology based on audio. They use the difference 
of spectral content between time sample with and without flying UAV to detect a drone. They 
identify it using matching between background/UAV combination database from the spectral 
density. This company commercializes their solution with an acoustic sensor which is an 
omnidirectional microphone or one mounted on parabolic structure to focus on target and to 
improve SNR. With this last solution, [25] indicates detection for distance up to 100-250 m in 
Urban environment, 250-500 m in Suburban environment, and 500-1000 m in rural environment 
which coincide with the signal-to-noise analysis done in section 1.  
In [27], SquareHead technology details their patented technology associating video and audio 
sensors with a commercialized solution named “Discovair”.  They use differential beamforming 
map associated to video for detection and machine learning for identification/classification.  

4. Conclusions

Many academics works are dealing with UAV detection/identification and classification from 
acoustic sensors since 2015. China, Europe, US mostly published. The maturity of the published 
technologies does not permit to have commercial solutions answering to the complete market 
requirements defined in the first chapter.  
The foreseen solution is based on a first detection stage which would localize the sound sources 
in 360° soundscape. It requires multi-microphone arrays of few sensors if TDOA processing is 
applied or more microphones if other methods are preferred. The processing has to be real time, 
preferably without human actions. Nevertheless, the automatization of the source extraction in 
the space and in the frequency spectrum with the best SNR needs to develop artificial intelligence 
on that topics. First approaches have been investigated with harmonics extraction, trajectory 
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coherence. The second stage is to apply machine learning for UAV sound recognition. The 
selection of the right features and good training are the success keys before any neural network 
methodology. The SVM is preferred to deep neural network due to the few available data. There 
are few academic works working on both stage detection/identification processing. Anyway the 
complete processing has to be evaluated together to optimize it. 
The experiments meet several difficulties. The GPS technology is not an easy task to retrieve the 
right trajectory limiting the evaluation of results. UAV flying requires authorization, and large area 
for test over 200 m. The UAV database are usually limited to few quadcopters. It leads to limited 
experiments usually not realistic. When system are then tested with true scenario, they failed to 
cope with the customer requirements. UAS detection must be sensitive enough to detect all 
drones operating within the area of use, but systems that are too sensitive may create an 
overwhelming number of false positives, rendering the system unusable. Systems that aren’t 
sensitive enough might generate false negatives, which is even less desirable from the operator’s 
standpoint. 
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