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ABSTRACT

Acoustic monitoring aims at detecting, identifying and
classifying sound sources. Recently, applications such
as street sound events detection or vulnerable areas pro-
tection have taken advantage of its techniques. Sound
sources of interest can be as varied as dog barks, engine
or drone noises and even gunshots sounds. Noises mea-
surement and data processing are two key aspects of such
applications. Noise measurement can be carried out with
a single microphone but in most environment, the pres-
ence of both multiples sources and high background noise
(wind, traffic) requires a microphone array to extract the
signal of interest and localize the sound sources. This pa-
per presents a methodology to control loud vehicles pass-
by noise in streets. First, a specific noise camera, includ-
ing acoustic and video measurements, allows to localise
the sound sources. Limited to one line of microphones for
cost and compactness reasons, this array is not able to sep-
arate the source of interest (a vehicle to control) from the
background noise in its main directivity lobe. To do so,
statistical learning is leveraged, using multimodal mea-
surements to eliminate false alarms. This paper details
the proposed joined methodology to localize and identify
vehicles pass-by noise, and presents applications on ex-
perimental data.
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1. INTRODUCTION

In recent years, noise events detection has become a
priority to tackle urban noise pollution by monitoring
vehicle noise in field conditions to obtain realistic noise
database and later define penalties [1].
The objective is to quantify the noise sources generated
by passing vehicles and to harmonize their levels to
the standard ISO 362-1:2022 [2]. Source of noise are
numerous in busy cities, with human activities (con-
struction or road works, conversations, etc.), natural
life (singing birds, dog barks, etc.) and environmental
noise (rain, storm, etc.). In these complex environments
with a multitude of noise sources, the use of a single
microphone/sound level meter for standardized vehicle
pass-by noise measurements implies to control that no
other noise sources have contributed to the ambient noise.
Coupling the audio measurement with video analysis
can help [3, 4] but is not sufficient for accurate sound
level estimation. Contrariwise, acoustic imaging methods
coupled with video enables the identification of noise
sources in space.
Two main approaches can be used to verify that the mea-
sured noise is emitted by a single passing vehicle: a first
one is to make use of triangulation to locate dominating
sources and check if one of them is positioned onto the
vehicle. However, as stated by Elias [5], as triangulation
lacks of accurate spatial resolution, the whole acoustic
scene must be overwhelmed by one dominant source,
which may not be the case in real-life traffic situations.
An alternative way is to take advantage of microphone
array processing to precisely estimate the sound level
of potential sources in the area surrounding the vehicle
position [6]. This paper addresses the latter as this
specific process allows to monitor vehicle sound emission
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even with low signal-to-noise ratio and gives accurate
sound quantification. Moreover, array processing can
spatially filter the source of interest from the others (close
vehicle, high background noise).

This type of measurement and processing with
a microphone array and video monitoring provides
interesting information for sound events detection,
such as their location, trajectory, frequency spectrum
or temporal behavior. In a nutshell, acoustic imaging
localizes acoustic hot spots in a predetermined area
around the microphone array. However, the nature of
the radiating object is still to be identified. Also, array
processing techniques are limited by the spatial resolution
of computed acoustic maps. Hence, especially at low
frequency, multiple sources can be hidden inside the most
prominent hot spots. To answer these questions, acoustic
imaging and video processing outputs can feed statistical
learning algorithms to identify the sound source and
prevent false alarms.

This paper presents the development and experiments
of the foreseen methodology detailed in [7], dedicated to
the acoustic monitoring of in situ vehicle pass-by noise.
Section 2 briefly describes the measurement system and
processing. Section 3 explains the objectives of statis-
tical learning using multimodal measurement. Finally,
Sec. 4 illustrates the proposed methodology with results
of passing vehicles from experiments in real-life traffic sit-
uations.

2. ACOUSTIC IMAGING FOR SOURCE
LOCALIZATION

2.1 Acoustic imaging measurement tool and set-up
for vehicle pass-by noise measurement

As stated in [7], the acoustic monitoring of vehicles along
traffic lanes leaded to design a linear microphone array,
ensuring optimal performances with respect to the geo-
metrical configuration, and completed with video mon-
itoring. Such a system named “dBFlash” has been de-
veloped to withstand long measurement campaigns over
several months in any weather conditions as illustrated on
Fig. 1. The antenna is 1,6 m long with 52 MEMS micro-
phones randomly distributed and protected from dust, rain
and wind. As illustrated on Fig. 2, it is installed on the
roadside, parallel to the lanes, at around 5 m height. This
antenna shape implies an optimal directivity in a view an-

gle of ± 30◦ on each side of the system. In front of the an-
tenna, a “control area” is set where the ability of array pro-
cessing to distinguish close sources is optimal. A sound
level meter is also synchronized with the microphone ar-
ray to measure the ambient noise according to standard
and certified measurement.

Figure 1. dBFlash system mounted on a mast with a
microphone array and video camera on top for in-situ
pass-by measurements.

The measurement is carried out over few seconds to
cover the vehicle passage through the measurement area
(at least +/- 10 m for speeds above 30 km/h). Data ac-
quisition is triggered from the top camera by the video
detection of passing vehicles below the microphone array.
It permits to easily synchronize video and audio record-
ings and ensures the vehicle position regarding the audio
processing. The system can be completed by an automatic
plate number recognition system (ANPR) to identify the
vehicle’s characteristics and its owner.

The video camera view angle allows to monitor two
lanes and trigger data acquisition for any driving direc-
tions below the system (upstream or downstream). Trig-
gering from video event rather than noise event permits to
process all vehicle passages independently of their acous-
tic level in a noisy environment.
Audio and video data are finally processed by a computer
and results are stored on a hard disk drive or transferred to
a secured server if necessary to comply with General Data
Protection Regulation.
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Figure 2. Pass-by noise measurement system dia-
gram.

2.2 Array processing for noise source quantification

As reference, the sound level meter quantifies the ambient
sound pressure level LAF with a frequency-weighting
A and a time-weighting F (fast) to comply with IEC
61672 standard [8]. The maximum time-weighted sound
level measured during the vehicle passage is denoted as
LAFmax. To be able to quantify the contribution of the
noise emitted by the sources inside the equivalent vehicle
area represented on Fig. 2, acoustic imaging algorithms
such as conventional beamforming [5] associated with a
deconvolution step (namely CLEAN-SC [9]) are applied
on microphones signals. The process is carried out in
frequency domain on short time sequences for which the
vehicle displacement is considered as negligible. The
frequency range is limited to [200-6 000] Hz, where the
array performance and directivity are validated without
spatial aliasing or too poor spatial resolution which would
not permit to separate two vehicles distant from 5 m in
the control area.

A linear calculation grid represents the potential noise
sources in the measurement area (between ± 10 m and
± 20 m) and is positioned close to the vehicle trajectory.
Therefore, the linear array has no resolution in the trans-
verse direction. Its length largely covers the equivalent
sources in the control area of interest (± 5 m) as required
by the deconvolution processing. The vehicle trajectory
is provided by video analysis with a good accuracy.
Hence, this processing provides a fruitful acoustic trace

representing sound events in a space/time reference frame.

From this acoustic trace, the potential sources in a
smaller zone denoted as equivalent vehicle area (whose
size equals one vehicle length (± 2.5 m), Fig. 2) are
spatially integrated to estimate their contribution during
the measurement to a reference point located 7.5 m away,
like in pass-by noise measurement standard. Therefore,
the integrated dB(A) sound level of isolated passing
vehicles can be estimated, as well as its maximum value.
A fast time-weighting is applied to smooth the tracking
with the same parameters as the sound level meter to
obtain the LAFmax. This methodology provides the
superimposed evolution of the ambient noise level and
the acoustic contribution of passing vehicle, respectively
measured and processed with the sound level meter
and the microphone array. A measurement campaign
at Transpolis test facilities (France) with low ambient
noise validated the good agreement between the maxima
of vehicle pass-by sound pressure level in dB(A) with
Fast weighting (LAFmax) computed with the sound
level meter and the array processing, respectively. Both
measurement systems were located close to the lane,
while the vehicle speed ranged from 30 to 90 km/h,
in both traffic directions. Discrepancies between both
measurements do not exceed 1 dB as illustrated on Fig. 3.

Figure 3. Sound pressure level LAFmax compari-
son between sound level meter and microphone array
processing for vehicle passage at different speeds.
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In noisy environments, the measured sound level in
the equivalent vehicle area may not only be due to the
passing vehicle acoustic radiation as other sources in this
area could be present at the same instant (other passing
or parked vehicles, dog barks, shouts, car horn . . . ). To
accurately identify the multiple elements in the acoustic
scene, statistical learning algorithms can be leveraged.

3. STATISTICAL LEARNING FOR SOURCE
IDENTIFICATION

3.1 Single vehicle from video analysis

The vehicle detection is carried out by statistical learning
algorithms such as Hidden Markov Models and its deriva-
tives [10]. It identifies all vehicles, their trajectory and
size. When the vehicle enters the device field of view,
video frames are extracted (Fig. 4, displaying both the
trajectory and the vehicle size. First, video monitoring
controls the presence of a single vehicle of interest in the
control area over ± 5 m as well as potential masking ve-
hicles on adjacent lanes.
All trajectories are automatically checked to ensure that
no other vehicles were simultaneously present in the con-
trol area. The vehicle size is also compared to the surface
covered by the second lane in the camera view angle in
case one vehicle could not be detected due to masking ef-
fect (e.g. a motorbike behind a van).

Figure 4. Contextual view from the video camera
with a red bounding box around the identified vehicle
and its trajectory.

3.2 Sound recognition

To identify the measured noise as a passing vehicle, its
signature is processed with statistical learning algorithms

initially trained from a large audio dataset of usual false
alarms (human conversation, dog barks, etc.) or undesired
types of noises (siren, horn).

Once vehicles are detected through video analysis,
acoustic measurements are triggered. Pressure signals are
then processed to compute a set of features that describe
shape, statistics and entropy of the signals in temporal,
spectral and cepstral domains [11]. Then, a linear sup-
port vector machine (SVM) model [12] is learned from
these features. This method has been previously assessed
and showed good performances in other acoustic applica-
tions [13].

4. APPLICATION TO IN-SITU VEHICLE
PASS-BY NOISE

4.1 Acoustic trace

Figure 5 displays the vehicle pass-by noise trace from ar-
ray processing for the scenario illustrated in Fig. 4. It
describes the acoustic scene in time-space domain. In
this case, it points out a dominant source emission lin-
early evolving in distance with time, which corresponds
to the vehicle displacement at constant speed. The two
close lines distant from 2.5 m correspond to the sources
emitted from front and rear vehicle areas. The engine
compartment emits higher levels (in second gear position)
than rear wheels/road contacts. The trace is centered as
the audio data acquisition is triggered when the vehicle
is passing by below the antenna with ± 1,5 seconds data
recording. Another acoustic trace is visible between -5
and -10 m but outside of the control area. It corresponds
to another vehicle slowly moving close to the antenna and
visible on the contextual view on Fig. 4.

4.2 Noise level estimation and equivalent vehicle area
noise level

From the array processing and sound level meter measure-
ments, sound pressure levels (dB(A)) are calculated with
and without Fast time-weighting during the vehicle pas-
sage. The acoustic trace maximum noise level displayed
in Fig. 5 is also extracted (Fig. 6). While there is a high
ambient noise around 70 dB(A) (green curve), the equiv-
alent noise source emission in the vehicle area has a max-
imum at 68,2 dB(A) (red curve). It corresponds to the ve-
hicle passage below the antenna. In this case, the vehicle
is 2,7 dB lower than the ambient noise during its passage.
Therefore, Fig. 6 proves the system’s ability to accurately
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Figure 5. Acoustic trace from deconvolution pro-
cessing for a passing vehicle.

quantify pass-by noise level, even if the sound pressure
level of the vehicle is below the ambient level.

Figure 6. Ambient (blue/green curves) and equiva-
lent vehicle area (orange/red curves) sound pressure
tracking for vehicle pass-by.

4.3 Specific case with sirens

Emergency vehicles usually emit high noise levels, espe-
cially when they make use of their siren. For that reason,
they make an interesting class to isolate from other vehi-
cles in usual traffic.

Hence, a linear SVM model has been trained with an
audio dataset composed of sounds of sirens from several
countries, as they often largely differ. 2620 samples of

0.2 seconds have been considered, 2077 for the training
set (4-fold cross-validation) and 543 for the test set. The
results are display in Tab. 1. the output confusion matrix
is displayed in Tab. 1, and shows accurate predictions :

Table 1. Confusion matrix of the SVM model.
Predicted

Siren Noise

A
ct

ua
l Siren 376 1

Noise 0 166

Machine learning algorithms such as SVM can also
provide fruitful information about the most significant fea-
tures that drive identification. Thus, the typical two-tone
siren seems to be mostly identified by a set of ten fea-
tures involving both temporal, spectral and cepstral do-
mains (Fig. 7), with a significant influence of skewness
and kurtosis properties as well as the Rényi entropy of the
signals.

Figure 7. Most prominent features for two-tone siren
identification. (temporal in red, spectral in blue and
cepstral in green.)
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5. CONCLUSION

In situ vehicle pass-by noise measurement with high back-
ground noise and disturbing sources requires to use acous-
tic imaging in combination with statistical learning to ob-
tain accurate vehicle noise levels with trust. Synchronized
with video monitoring, the proposed system can be used
in automatic mode to build a large database of vehicle
noises in urban areas or control vehicles for noise thresh-
old infringment. These results point out that the acous-
tic trace provides valuable information which could help
to describe the acoustic scene with more precision. For
example, impulsive, stationary or moving sources can be
directly distinguished from these maps. Also, this work
opens many other possible applications aimed at detect-
ing, identifying and classifying noise sources in various
sound landscapes. As mentioned in the paper, the linear
geometry of the proposed array implies its resolution in
the transverse direction is limited. Therefore, further stud-
ies are required to apply this methodology to multi-lane
roads, possibly using a multi-antenna configuration, able
to grasp the transverse direction.

6. ACKNOWLEDGMENTS

MicrodB wishes to acknowledge the support of French
ADEME organization on dBFlash project.

7. REFERENCES

[1] L. Morris, A. Lawrence, and R. Stait, “Roadside ve-
hicle noise measurement – Phase 1 study report and
technology recommendations,” tech. rep., Atkins and
Jacobs, mar. 2019.

[2] “ISO 362-1:2022 – Acoustics – Engineering method
for measurement of noise emitted by accelerating road
vehicles – Part 1: M and N categories,” standard, In-
ternational Organization for Standardization, Geneva,
CH, Mar. 2022.

[3] A. Klos, “Noise camera: automated detection tech-
nology to identify noisy vehicles,” in Proceedings of
ACOUSTICS 2006, pp. 343–348, Australian Acousti-
cal Society, 2006.

[4] A. Agha, W.-S. Gan, Y.-K. Chong, and B.-W. Ang,
“A noisy vehicle surveillance camera (noivelcam) sys-
tem,” in INTER-NOISE and NOISE-CON Congress
and Conference Proceedings, vol. 249, pp. 1046–
1054, Institute of Noise Control Engineering, 2014.

[5] G. Elias, “Experimental techniques for source loca-
tion,” Lectures Series 1997–07 Aeroacoustics and Ac-
tive Noise Control, 1997.
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